Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 72(5): 885-898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38311982

RESUMO

It is well established that axonal Neuregulin 1 type 3 (NRG1t3) regulates developmental myelin formation as well as EGR2-dependent gene activation and lipid synthesis. However, in peripheral neuropathy disease context, elevated axonal NRG1t3 improves remyelination and myelin sheath thickness without increasing Egr2 expression or activity, and without affecting the transcriptional activity of canonical myelination genes. Surprisingly, Pmp2, encoding for a myelin fatty acid binding protein, is the only gene whose expression increases in Schwann cells following overexpression of axonal NRG1t3. Here, we demonstrate PMP2 expression is directly regulated by NRG1t3 active form, following proteolytic cleavage. Then, using a transgenic mouse model overexpressing axonal NRG1t3 (NRG1t3OE) and knocked out for PMP2, we demonstrate that PMP2 is required for NRG1t3-mediated remyelination. We demonstrate that the sustained expression of Pmp2 in NRG1t3OE mice enhances the fatty acid uptake in sciatic nerve fibers and the mitochondrial ATP production in Schwann cells. In sum, our findings demonstrate that PMP2 is a direct downstream mediator of NRG1t3 and that the modulation of PMP2 downstream NRG1t3 activation has distinct effects on Schwann cell function during developmental myelination and remyelination.


Assuntos
Bainha de Mielina , Remielinização , Camundongos , Animais , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo , Axônios/metabolismo , Nervo Isquiático/metabolismo , Camundongos Transgênicos , Trifosfato de Adenosina/metabolismo
2.
Glia ; 70(12): 2276-2289, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35903933

RESUMO

Peripheral nerves and Schwann cells have to sustain constant mechanical constraints, caused by developmental growth as well as stretches associated with movements of the limbs and mechanical compressions from daily activities. In Schwann cells, signaling molecules sensitive to stiffness or stretch of the extracellular matrix, such as YAP/TAZ, have been shown to be critical for Schwann cell development and peripheral nerve regeneration. YAP/TAZ have also been suggested to contribute to tumorigenesis, neuropathic pain, and inherited disorders. Yet, the role of mechanosensitive ion channels in myelinating Schwann cells is vastly unexplored. Here we comprehensively assessed the expression of mechanosensitive ion channels in Schwann cells and identified that PIEZO1 and PIEZO2 are among the most abundant mechanosensitive ion channels expressed by Schwann cells. Using classic genetic ablation studies, we show that PIEZO1 is a transient inhibitor of radial and longitudinal myelination in Schwann cells. Contrastingly, we show that PIEZO2 may be required for myelin formation, as the absence of PIEZO2 in Schwann cells delays myelin formation. We found an epistatic relationship between PIEZO1 and PIEZO2, at both the morphological and molecular levels. Finally, we show that PIEZO1 channels affect the regulation of YAP/TAZ activation in Schwann cells. Overall, we present here the first demonstration that PIEZO1 and PIEZO2 contribute to mechanosensation in Schwann cells as well myelin development in the peripheral nervous system.


Assuntos
Canais Iônicos , Células de Schwann , Canais Iônicos/genética , Canais Iônicos/metabolismo , Bainha de Mielina/metabolismo , Neurogênese , Células de Schwann/metabolismo
3.
Front Mol Neurosci ; 15: 881571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592111

RESUMO

Background: Numerous studies have indicated that myelination is the result of the interplay between extracellular signals and an intricate network of transcription factors. Yet, the identification and characterization of the full repertoire of transcription factors that modulate myelination are still incomplete. CC2D1B is a member of the Lgd/CC2D1 family of proteins highly expressed in myelinating cells in the central and peripheral nervous systems. In addition, the absence of CC2D1B limits myelin formation in vitro. Here we propose to delineate the function of CC2D1B in myelinating cells during developmental myelination in vivo in the central and peripheral nervous systems. Methods: We used a Cc2d1b constitutive knockout mouse model and then performed morphological analyses on semithin sections of sciatic nerves and electron micrographs of optic nerves. We also performed immunohistological studies on coronal brain sections. All analyses were performed at 30 days of age. Results: In the peripheral nervous system, animals ablated for Cc2d1b did not show any myelin thickness difference compared to control animals. In the central nervous system, immunohistological studies did not show any difference in the number of oligodendrocytes or the level of myelin proteins in the cortex, corpus callosum, and striatum. However, optic nerves showed a hypomyelination (0.844 ± 0.022) compared to control animals (0.832 ± 0.016) of large diameter myelinated fibers. Conclusions: We found that CC2D1B plays a role in developmental myelination in the central nervous system. These results suggest that CC2D1B could contribute to gene regulation during oligodendrocytes myelination in optic nerves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA